MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		2	Mark Scheme	Syllabus	Paper			
			IGCSE – May/June 2014			0606	23	
1		500 -	$=\frac{1}{2}r^2(1.6)$	M1				
1	(i)	500 -	$\frac{1}{2}$ (1.0)	M1				
		25 or	ly	A1	±25	5 is A0		
	(ii)	their	$25 + their 25 + their 25 \times 1.6$ or better	M1	thei	ve		
		90		A1				
2		\log_x	$3 = \frac{1}{\log_3 x}$ oe soi	B1	may	may be implied by $\log_x 3 = \frac{1}{u}$ oe		
		$u^2 - 4$	u - 12 = 0 oe	M1	con	done sign errors		
		solve	their 3 term quadratic in <i>u</i>	M1				
		Solve	$e \log_3 x = 6 \text{ or } \log_3 x = -2 \text{ oe}$	M1				
		729 a	nd $\frac{1}{9}$	A1				
3	(i)	$\begin{pmatrix} 3\\1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 4 \\ 3 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} $	B1				
		or (5	$ \begin{pmatrix} 1 & 4 \\ 3 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} $ $ 3 1) \text{ and } \begin{pmatrix} 3 & 1 \\ 1 & 4 \\ 4 & 0 \end{pmatrix} $					
		Mult	plication of compatible matrices	M1		st be correct shape duct	from candidates	
		$\begin{pmatrix} 22\\17 \end{pmatrix}$	or (22 17) as appropriate	A1				
	(ii)	(1 1	or (22 17) as appropriate) with $\begin{pmatrix} 22\\17 \end{pmatrix}$ or (22 17) with $\begin{pmatrix} 1\\1 \end{pmatrix}$	B1				

	Page 3	Mark Scheme	Syllabus	Paper				
		IGCSE – May/June 2014	0606	23				
4	(a) (i)		B1					
	(ii)	or or	B1		any Venn diagram showing three circles which do not all overlap			
	(b) (i)	$50 \notin C$	B1					
	(ii)	$64 \in S \cap C$	B1ft		ft only on use of			
	(iii)	n(S') = 90	B1					
5	(i)	$\left(2\sqrt{2}+4\right)^2 = 8 + 16\sqrt{2} + 16$	B 1					
		Correct completion	B 1					
	(ii)	Use $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	M1	$ \begin{pmatrix} \\ = -2 \\ 2 \end{pmatrix} $	$\frac{\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}+3\right)}$			
		Multiply top and bottom by $2\sqrt{2} - 3$	M1					
		$2-\sqrt{2}$	A1	Or 4	$\sqrt{2} - 6$			
6		Eliminate <i>x</i> or <i>y</i>	M1					
		Rearrange to quadratic in x or y	M1					
		$x^{2} - 27x + 72 = 0$ or $y^{2} + 9y - 90 = 0$	A1					
		Factorise or solve 3 term quadratic	M1					
		x = 3, x = 24 or $y = 6, y = -15$	A1					
		y = 6, y = -15 or $x = 3, x = 24$	B 1					

Page		4	Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2014			0606	23
7	(a)	$\frac{\frac{\cos\theta}{1}}{\cos\theta}$	$\frac{\partial}{\partial t} + \frac{\cos\theta}{\sin\theta}}{\frac{\partial}{\partial t} + \frac{1}{\sin\theta}}$ s the fractions in the numerator and	B1 M1		
		$\frac{\sin^2 \theta}{\sin^2 \theta}$	minator using common denominator $\frac{\theta + \cos^2 \theta}{\theta + \cos \theta}$ and completion	A1 B1		
	(b)	sin x	nce of 13 = $\frac{5}{13}$ = $-\frac{12}{13}$	B1 B1 B1ft	ft on <i>their</i> 13	
8	(i)	Atten	npt to find $b^2 - 4ac$	M1	may be in formula or attempt to complete	square
		Comp	pletely correct argument	A1		
	(ii) <i>m</i> =		5(4) - 8(2) + 3	M1		
		<i>y</i> – 10	0 = 11(x - 2) or $y = 11x - 12$	A1		
	(iii)	Integ	rate to $2x^3 - 4x^2 + 3x(+c)$	B2,1,0		
		10 = 2	$2(2)^3 - 4(2)^2 + 3(2) + c$	M1	dep on c being a genuir integration	ne constant of
		y = 2x	$x^3 - 4x^2 + 3x + 4$ soi	A1		

F	Page 5		Mark Scheme	Syllabus	Paper		
			IGCSE – May/June 2014			0606	23
9 (i)	(0, 7)		B1			
		<i>m_{AB}</i> =	= 2	B 1			
		perpe	endicular gradient $=-\frac{1}{2}$	M1			
		<i>y</i> = -	$-\frac{1}{2}x + 7$	A1			
(ii	i)	m _{AB} =	= -1	B 1			
		<i>y</i> = –	x + 13	B 1			
		Solve	e their $y = -x + 13$ and $y = -\frac{1}{2}x + 7$	M1			
		D(12	,1)	A1			
		Com	plete method for area	M1			
		84		A1			
10 (i)	$\frac{d}{dx}$	$dx \sqrt{\sqrt{x^2+21}}$			method using prod	luct rule
		ux <				$\frac{1}{\left(\sqrt{x^2+21}\right)} = \frac{1}{\left(\sqrt{x}\right)^2}$	$\frac{-x}{x^2+21}\Big)^3$ is B1
		Use o	of quotient rule	M1	ther	n M1 A1 as in quo	tient
		$2\sqrt{x}$	$\frac{x^{2}+21)}{\sqrt{x^{2}+21}} - 2x \times \frac{x}{\sqrt{x^{2}+21}}$ (x ² +21)	A1			
		Mult	ply each term by $\sqrt{(x^2 + 21)}$	M1			
		$\frac{2(x^2)}{(x^2)}$	$(+21) - 2x^2$ leading to $k = 42$ $(x^2 + 21)^{\frac{3}{2}}$	A1			
(ii			$\frac{2x}{\sqrt{x^2 + 21}}$	M1	k m	ust be a constant	
		Use l	imits in $C \times \frac{2x}{\sqrt{x^2 + 21}}$	M1			
		$\frac{8}{55}$ o	r 0.145	A1			

Page 6		Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2014		0606	23
11 (i)	$\overrightarrow{OM} =$	a	B1		
	$\overrightarrow{MB} =$	5 b − a	B 1		
(ii)	$\overrightarrow{ON} =$	3b	B 1		
	$\overrightarrow{AP} =$	$\lambda \left(3\mathbf{b} - 2\mathbf{a} \right)$	B 1		
(iii)		$\overrightarrow{MA} + \overrightarrow{AP}$ (3 b - 2 a)	M1 A1		
(iv)		$\vec{P} = \mu \vec{MB}$	M1		
	Equate	e components	M1		
	Solve	simultaneous equations	M1		
	$\lambda = \frac{5}{7}$		A1		
12 (i)	3 < f <	< 7	B1,B1	If B0 then SC1 for 3 <	f < 7
(ii)	f(12) =	= 5	B1	f ² (x) $\sqrt{(\sqrt{(x-3)}+2-)}$	$\overline{3}$ + 2 earns B1
	(f(5) =	$(-1)^{2} + \sqrt{2}$	B 1		
(iii)		indication of method = $(x-2)^2 + 3$	M1 A1	condone $y = (x-2)^2 + 3$	3
(iv)	$\operatorname{gf}(x)$	$=\frac{120}{\sqrt{(x-3)}+2}$	B1		
	Attem	pt to solve <i>their</i> gf $(x) = 20$	M1		
	<i>x</i> = 19		A1		